Invited Review HIGHLIGHTED TOPIC Biomechanics and Mechanotransduction in Cells and Tissues Mechanical signal transduction in skeletal muscle growth and adaptation

نویسنده

  • James G. Tidball
چکیده

Tidball, James G. Mechanical signal transduction in skeletal muscle growth and adaptation. J Appl Physiol 98: 1900 –1908, 2005; doi:10.1152/japplphysiol. 01178.2004.—The adaptability of skeletal muscle to changes in the mechanical environment has been well characterized at the tissue and system levels, but the mechanisms through which mechanical signals are transduced to chemical signals that influence muscle growth and metabolism remain largely unidentified. However, several findings have suggested that mechanical signal transduction in muscle may occur through signaling pathways that are shared with insulin-like growth factor (IGF)-I. The involvement of IGF-I-mediated signaling for mechanical signal transduction in muscle was originally suggested by the observations that muscle releases IGF-I on mechanical stimulation, that IGF-I is a potent agent for promoting muscle growth and affecting phenotype, and that IGF-I can function as an autocrine hormone in muscle. Accumulating evidence shows that at least two signaling pathways downstream of IGF-I binding can influence muscle growth and adaptation. Signaling via the calcineurin/nuclear factor of activated T-cell pathway has been shown to have a powerful influence on promoting the slow/type I phenotype in muscle but can also increase muscle mass. Neural stimulation of muscle can activate this pathway, although whether neural activation of the pathway can occur independent of mechanical activation or independent of IGF-I-mediated signaling remains to be explored. Signaling via the Akt/mammalian target of rapamycin pathway can also increase muscle growth, and recent findings show that activation of this pathway can occur as a response to mechanical stimulation applied directly to muscle cells, independent of signals derived from other cells. In addition, mechanical activation of mammalian target of rapamycin, Akt, and other downstream signals is apparently independent of autocrine factors, which suggests that activation of the mechanical pathway occurs independent of muscle-mediated IGF-I release.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HIGHLIGHTED TOPIC Biomechanics and Mechanotransduction in Cells and Tissues Reduction of caveolin-3 expression does not inhibit stretch-induced phosphorylation of ERK2 in skeletal muscle myotubes

physiology, especially those papers emphasizing adaptive and integrative mechanisms. It is published 12 times a publishes original papers that deal with diverse area of research in applied

متن کامل

Invited Review HIGHLIGHTED TOPIC Biomechanics and Mechanotransduction in Cells and Tissues Mechanical, biochemical, and extracellular matrix effects on vascular smooth muscle cell phenotype

Stegemann, Jan P, Helen Hong, and Robert M. Nerem. Mechanical, biochemical, and extracellular matrix effects on vascular smooth muscle cell phenotype. J Appl Physiol 98: 2321–2327, 2005; doi:10.1152/japplphysiol.01114.2004.—The vascular smooth muscle cell (VSMC) is surrounded by a complex extracellular matrix that provides and modulates a variety of biochemical and mechanical cues that guide ce...

متن کامل

Mechanical signal transduction in skeletal muscle growth and adaptation.

The adaptability of skeletal muscle to changes in the mechanical environment has been well characterized at the tissue and system levels, but the mechanisms through which mechanical signals are transduced to chemical signals that influence muscle growth and metabolism remain largely unidentified. However, several findings have suggested that mechanical signal transduction in muscle may occur th...

متن کامل

A review on the role of inositol in aquaculture

Inositol is usually classified as an essential vitamin for most animals, and is recognised as a part of the B-complex vitamins. Among all other inositol isomer forms, myo-inositol possesses biological activity. It is found in the brain, skeletal, heart, and main reproductive tissues and exists as a structural component of phosphatidylinositol in biological cell membranes. Myo-inositol, also act...

متن کامل

A review on the role of inositol in aquaculture

Inositol is usually classified as an essential vitamin for most animals, and is recognised as a part of the B-complex vitamins. Among all other inositol isomer forms, myo-inositol possesses biological activity. It is found in the brain, skeletal, heart, and main reproductive tissues and exists as a structural component of phosphatidylinositol in biological cell membranes. Myo-inositol, also act...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005